• Herff, C. et al. Brain-to-text: decoding spoken phrases from phone representations in the brain. Front. Neurosci. 9, 217 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herff, C. et al. Generating natural, intelligible speech from brain activity in motor, premotor, and inferior frontal cortices. Front. Neurosci. 13, 1267 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kellis, S. et al. Decoding spoken words using local field potentials recorded from the cortical surface. J. Neural Eng. 7, 056007 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pei, X., Barbour, D. L., Leuthardt, E. C. & Schalk, G. Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans. J. Neural Eng. 8, 046028 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mugler, E. M. et al. Direct classification of all American English phonemes using signals from functional speech motor cortex. J. Neural Eng. 11, 035015 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, J., Liberman, M. & Cieri, C. Towards an integrated understanding of speaking rate in conversation. In 9th Intl Conf. on Spoken Language Processing https://doi.org/10.21437/Interspeech.2006-204 (2006).

  • Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Broca, P. Nouvelle observation d’aphemie produite par une lesion de la troisieme circonvolution frontale. Bull. Soc. Anat. 2, 398–407 (1861).

    Google Scholar 

  • Friederici, A. D. & Gierhan, S. M. The language network. Curr. Opin. Neurobiol. 23, 250–254 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ardila, A., Bernal, B. & Rosselli, M. How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch. Clin. Neuropsychol. 31, 112–122 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and articulation. Neuron 89, 1187–1193 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E. & Duffau, H. Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 137, 2773–2782 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gajardo-Vidal, A. et al. Damage to Broca’s area does not contribute to long-term speech production outcome after stroke. Brain 144, 817–832 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, J. P. et al. Dissociation of Broca’s area from Broca’s aphasia in patients undergoing neurosurgical resections. J. Neurosurg. 138, 847–857 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Godfrey, J. J., Holliman, E. C. & McDaniel, J. SWITCHBOARD: telephone speech corpus for research and development. In IEEE Intl Conf. on Acoustics, Speech, and Signal Processing https://doi.org/10.1109/ICASSP.1992.225858 (IEEE, 1992).

  • Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012).

    Article 
    ADS 

    Google Scholar 

  • Graves, A., Mohamed, A. & Hinton, G. Speech recognition with deep recurrent neural networks. In 2013 IEEE Intl Conf. on Acoustics, Speech and Signal Processing https://doi.org/10.1109/ICASSP.2013.6638947 (IEEE, 2013).

  • Xiong, W. et al. The Microsoft 2017 Conversational Speech Recognition System. In 2018 IEEE Intl Conf. on Acoustics, Speech and Signal Processing (ICASSP) https://doi.org/10.1109/ICASSP.2018.8461870 (IEEE, 2018).

  • Dyer, E. L. et al. A cryptography-based approach for movement decoding. Nat. Biomed. Eng. 1, 967–976 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farshchian, A. et al. Adversarial domain adaptation for stable brain-machine interfaces. Preprint at https://doi.org/10.48550/arXiv.1810.00045 (2019).

  • Degenhart, A. D. et al. Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-020-0542-9 (2020).

  • Karpowicz, B. M. et al. Stabilizing brain-computer interfaces through alignment of latent dynamics. Preprint at bioRxiv https://doi.org/10.1101/2022.04.06.487388 (2022).

  • Pels, E. G. M., Aarnoutse, E. J., Ramsey, N. F. & Vansteensel, M. J. Estimated prevalence of the target population for brain-computer interface neurotechnology in the Netherlands. Neurorehabil. Neural Repair 31, 677–685 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandarinath, C. et al. High performance communication by people with paralysis using an intracortical brain-computer interface. eLife 6, e18554 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Räihä, K.-J. & Ovaska, S. An exploratory study of eye typing fundamentals: dwell time, text entry rate, errors, and workload. In Proc. SIGCHI Conf. on Human Factors in Computing Systems https://doi.org/10.1145/2207676.2208711 (Association for Computing Machinery, 2012).

  • Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making brain–machine interfaces robust to future neural variability. Nat. Commun. 7, 13749 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurmikko, A. Challenges for large-scale cortical interfaces. Neuron 108, 259–269 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Rubin, D. B. et al. Interim safety profile from the feasibility study of the BrainGate neural interface system. Neurology 100, e1177–e1192 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musk, E. & Neuralink An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahasrabuddhe, K. et al. The Argo: a high channel count recording system for neural recording in vivo. J. Neural Eng. https://doi.org/10.1088/1741-2552/abd0ce (2020).

    Article 

    Google Scholar 

  • He, Y. et al. Streaming end-to-end speech recognition for mobile devices. In ICASSP 2019 – 2019 IEEE Intl Conf. on Acoustics, Speech and Signal Processing (ICASSP) https://doi.org/10.1109/ICASSP.2019.8682336 (IEEE, 2019).

  • Aiello, A. A Phonetic Examination of California (UCSC Linguistics Research Center, 2010).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *